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SUMMARY

14930

A theoretical investigation of the hypervelocity impact
of pellets with thin plates has been performed.

Some of the experimental work on the determination of
shocked states has been reviewed and incorporated into a purely
one-dimensional model of the impact phenomena. Based on this
model, a computer program was developed using a finite difference
technique based on the method of characteristics in order to
calculate the one-dimensional system of interacting waves. An
arbitrary equation of state could be used.

Using this program, various equations of state were
examined as to their relative merits in describing the dynamics
of the expansion process, Especially the ideal gas approximation-
was critically examined and found to be applicable at high impact
velocities, Upstream flow was calculated and its dependence on
impact velocity and bumper material analyzed. For the impact
of unlike materials, the importance of the reflections from the
contact front are considered.

In addition some of the experimental techniques used in

hypervelocity impact are analyzed as to their direct application /h\\\

to the verification of the foregoing theoretical predictions.




ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Professor
G.V. Bull for initiating this problem and for his continued
encouragement. The advice and constructive criticisms of
Mr. J. H. S. Lee were appreciated.

This work was supported by NASA under Contract No, NAS 3-4190,



1.1

1.2

1.3

1.4

2.2

2.3

2.4

2.5

iii

TABLE OF CONTENTS

SUMMARY
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF SYMBOLS

GENERAL CONSIDERATIONS OF THE HYPERVELOCITY
PROBLEM

Introduction

The Experimental Determination of
Properties Behind Shocks in Solid

(A) Some Basic Properties of the Shock
Transition

(B) Experimental Determination of the
Hugoniot Curve

(C) Isentropic Compressibility Behind
a Shock

The Equation of State

(A) Condensed States

(B) Expanded States

General Equations of Motion

THE IMPACT OF PELLETS WITH THIN BUMPER
PLATES

Introduction

Geometry of the One-Dimensional
Formulation

Shock System
Interaction Times and Distances

The Interaction Region

ii

iii - iv

v - vi

10

11

12

15

“17

20

20

24

25

27

33



.3

3.

3.

.3.

iv

Boundaries of the Interaction Region
Interaction with a Contact Surface
Calculation of the Isentropes & Several
Approximations

RESULTS AND DISCUSSIONS

Initial States

Interaction Points

The Interaction Region

1 Accuracy of the Numerical Technique

2 Effect on Equation of State on
Expansion

3 Surface of Zero Velocity

4 Reflections from the Contact Point

RECOMMENDATIONS FOR EXPERIMENTAL WORK

APPENDIX A
APPENDIX B

LIST OF REFERENCES
TABLE 1

TABLE II

TARLE III

38

41

44

51

51

62

64

64

65
71

73

75

76

77

81

82

85

85

86



>
>e
- o

=3

-

p
(O3]

)

L IONPIIN . s R ESL O M A4 0 £ A<,

3

LIST OF SYMBOLS

velocity vector

divergence

one-dimensional particle velocity
velocity of sound

density

pressure

absolute temperature
specific internal energy
specific entropy

specific heat at constant volume
ratio of specific heats
shock velocity

isentropic compressibility
pellet length

bumper thickness

pellet radius

impact velocity

pellet shock

bumper shock

contact front

pellet rarefaction

bumper rarefaction
characteristic directions
pressure interval

constants in Murnaghan's equation



B5id , Aud-
ab,A B
E& B¢,

(P

%(0)

C

constants in the polytropic equation
constants occurring in Tillotson's
equations

cold compression curve (zero degree
isotherm)

cold compression energy
Gruneisen's constant

electronic specific heat

Subscripts

bumper material

pellet material

contact front

initial unshocked state
characteristics
characteristics

reflected characteristics
from contact front



1. GENERAL CONSIDERATIONS OF THE HYPERVELOCITY IMPACT PROBLEM

1.1 Introduction

A projectile travelling at hypervelocity (V > 5 km/sec)
possesses large amounts of energy and momentum due to its
motion., A typical value of kinetic energy would be 12
kilocal/gm. corresponding to a velocity of 10 km.sec.

This may be compared to a typical explosive such as TNT

which has an energy release of about 1.5 kilocal/gm.

When this projectile impacts on a target surface, this
energy is explosively distributed over a very small area.
Strong shock waves are formed compressing projectile and
target material and generating extremely high pressures

typically measured in megabars.*

The pressure of the shocked material generally is very
much larger than the material strength, typically measured
in kilobars.*% This leads to the important simplification
that the behaviour of the shocked material can be described
by an inviscid, compressible fluid. This is one of the
basic assumptions of many theories of hypervelocity impact
and its limitations along with other approximations will be

discussed in the subsequent sections.

* The shocks generated on impact of an aluminum projectile with
an aluminum target at 10 km/sec compress material to 1.7 times
its original density and raise pressure to 1.65 megabars.

*% e,g., the tensile strength of aluminum at standard conditions
is 1.1 kilobars.



The high thermodynamic states generated on impact
cannot exist long since the surroundings are generally
at much lower conditions. The pressure differential
being very great (megabars —s zero for meteor impact)
the resulting expansion is extremely rapid, typically
time is measured in microseconds and the whole impact

phenomena is essentially complete within milliseconds.*

The above discussion should give one a feel for some
of the numbers involved and also indicate the difficulties
that will be encountered in the analysis of the hyper-
velocity impact problem, both by analytical or experimental

methods.

* This would depend on course of the scale of the impact, the
case considered here is a projectile with dimensions of the
order of a cm.
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The Experimental Determination of the Properties
Behind Shocks in Solids

(A) Some Basic Properties of the Shock Transition

The conditions across a normal shock can be derived
with great generality and are subject to relatively few
restrictions., The assumptions made are:

(a) a steady state is eventually reached some
distance behind the shock front

(b) the material under pressure behaves as a
fluid

(c) radiation losses may be neglected

The derivation can be made in any Galilean reference system

but for simplicity and clarity the following system is

chosen:

-
where § 1is a normal shock moving into a medium at rest

with velocity W . The particle velocity behind the

shock with respect to the unshocked material (subscript o)

is

Now, if conditions (a), (b) and (c) are assumed then
an application of the conservation conditions across the
shock gives:

Conservation of Mass

XWE 6(“)—%) 1.2.1




Conservation of Momentum

ot Qa0 b @[t~ w)?

Conservation of Energy

Eo+bo/@+%w1=E+}o/€+K<w-u5l 1.2.3

Combining equations 1.2.1 and 1.2.2, eliminating u,

gives:
NS
w: b'bo
fl(_l__'_
°\C €
1.2.4
For the pressure jump from equation 1.2.2, we have
\:)- l:’\, et QOU\)L —_ C(u ")J.>2_
= QLL(L*)"L{>: QOWLL
1.2.5

The above two equations 1.2.4 and 1.2.5 were derived
using the mechanical conservation conditions only (mass
and momentum). Using the energy relation equation

1.2.3, the following equation may be derived:

E- B (b b)Y

1.2.6



This important relation is known as the Rankine-
Hugoniot condition across a shock. Its importance lies
in the fact that if an equation of state of the form
E=E ( Q F) ) is specified then equation 1.2.6 describes

a unique curve in the):) -—(3 plane for each initial

condition (‘O0 7@% ).

There are however, certain restrictions on the form of
E (Gyt) ) known as the Bethe-Weyl conditions (Ref. 9) and

can be stated as follows:

For stable compressive shocks to exist the equation of

state has to satisfy the following inequalities:

($&)e=o

B >0

(F&).>o
1.2.7

These are satisfied for nearly all materials®* that we

are concerned with and thus need not be dwelled upon.

* An important exception to this is phase changes where dis-
continuities in Hugoniot curves occur violating conditions
1.2.7




For equations of state satisfying the above
conditions, the Hugoniot curve takes on the following

general shape.

Hugoniot Curve
for a typical
material

K

'
Where point A (*{, /ég ) is the initial state and B
(*),‘/% ) is the condition behind the shock. One
important fact is that the slope of line A-B is directly

related to the speed of the shock through equation 1.2.4

. b'bo ‘(SL,PE)
i.e. W= T\ =
Qoi'q'o-—’ Qoa

(B) Experimental Determination of the Hugoniot Curve

Of the relations derived in the previous section, two
assume special importance in the experimental determin-
ation of shock Hugoniots. They are equations 1.2.1 and

1.2.5 which may be re-written as:

w)
(’: Qow-u 1.2.8

and P = P, ¢ UW

1.2.9




Assuming the initial states to be known, the density
e and .the pressure F , can be determined from an
experimental observation of the shock velocitx tJ , and
the particle velocity behind that shock, L . In this
way a point is located on the Hugoniot curve which passes

through the initial conditions ( Po1Po ).

In general velocity measurements can be made quite
accurately and a number of experimental techniques have
been developed in the last 15 years (see Refs. 1, 2, 3,

4, 5 & 6).

In order to satisfy assumption (a) and (b) of the
section (A), sufficiently strong shocks have to be
generated so that (a) the shock thickness does not
approach the physical dimensions of the experiment, and
(b) the shocked pressure is sufficiently above the yield
strength of the material so that the material behaves as

a fluid.

To produce shocks of this strength requires the
practically instantaneous generation of very high
pressures (at least 10 - 100 kilobars) which have to be
held constant over a period of time (approx. 1 } sec)

in order for shock to be of constant strength.

Two basically different techniques have been

developed in order to fulfill the above requirements.



The Direct Contact Method

In this method an explosive lens (producing a plane
detonation wave) is placed in direct contact with the
sample. The interaction of the detonation with the
surface of the sample produces the necessary pressure
for a short period of time. The pressure produced is
generally not perfectly constant, as is required, but
the shock attenuation due to this is generally small

(see Ref. 4),.

The measurements made are the shock velocity and the
free-surface velocity of the target material as the
shock emerges from the end of the sample. It has been
shown (Refs. 1 and 4) that this velocity is nearly
twice the particle velocity behind the shock for most
materials with very little deviation(at least for
shocks generated within the experimental regime of this

method. )

Shock pressures are limited in this method to the
range 50 - 500 kilobars. The lower limit arises due to
failure of explosive to detonate. For pressure below
and above this region a substantially different technique

is used.



The Flying Plate Method

In this method a plate is explosively accelerated
and impacts on a target. Various methods of
acceleration are used but for shock Hugoniot studies an
explosive-lens system is generally used to obtain
maximum impact velocities (up to 14 km/sec, Ref.6)

using relatively short runs (several cms).

The particle velocity, in this case, can be directly
deduced from the velocity of the free-running plate.
If projectile and target are of the same material then the
particle velocity is exactly half the impact velocity (see
section 2.4) For the impact of different materials the
particle velocities can be obtained through the
impedance matching of bumper with projectile material

provided the Hugoniot curve of one of these is known.

Using this method pressures as high as 9 megabars
have been reported (Ref. 6). The limiting factor in this
method seems to be the energy release possible in a
single explosive stage and possibly multiple staging or
even a low yield nuclear device have been suggested (Ref.
8) to bring pressures up to the ultimate using this
technique (several hundred megabars). The limit being
the maximum acceleration a plate will take without
breaking up or being heated to its melting point by the

explosive substance.
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N (C) Isentropic Compressibility Behind a Shock

At some time following the initial formation of the
impact shocks, the shocked material will be expanded.
It is therefore necessary to determine the compressibility

of the material in the shocked state,.

This is done by determining the speed of sound in
the shocked medium through shock attenuation experiments
(Ref. 7), the speed of sound being related to the
isentropic compressibility by:

K. ﬁ%%)g:@(:l

1.2.10

The actual experimental technique is much the same
as in the flying plate method except that the projectile
release wave* is allowed to overtake and attenuate the

target shock, by using a relatively thick bumper.

Knowledge of the shock decay curve enables one to
pin-point where the projectile rarefaction first over-
takes the bumper shock. If the shock Hugoniot for the
material is known from previous experiments, the speed

of sound in the shocked material can then be determined.

* formed when projectile shock reaches free surface
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The values for the isentropic compressibility
determined in this manner agree very closely with those
calculated from the various equations of state (see
section 1.3 and Refs. 7 and 11), thus providing an
important check on their validity.

The Equation of State

In dealing with condensed media such as shocked solid
materials, the usual approximate relations developed for
gases do not apply and new equations based on solid state

theories have to be developed.

A difficulty arises here due to the fact that we are
generally interested in the complete expansion from
megabars to a vacuum. For highly shocked materials the
expansion into vacuum is very much like a gas (i.e. density

—> zero as pressure —zero). For not so strongly
shocked materials the density does not go to zero as the
pressure decreases to zero, since the shocks do not have
sufficient energy to vapourize the material. Unfortunately
the latter case is true for most of the experimental range
available and only at impact velocities approaching 15 km/
sec. do most metals start to behave like gases in the

expansion phase of the impact phenomena.

Many non-metals, however, do vapourize before this
(e.g. camphor) but they are not as well known thermo-
dynamically as metals and a great deal of uncertainty
exists about even the heat of vapourization (especially

plastics).
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(A) Condensed States

In the high density shocked phase of the expansion
( Q;/%;j7 | ) most materials behave similarly regardless
of the impact velocity and the equations developed in
solid state physics for ultra-high pressures are
expected to apply. One of the best known of these is
the Mie-Gruneisen equation of state. It has been used
with reasonable success by Walsh et al. (Refs. 1, 2, 3
and 4) in the early Los Alamos work on shocked solid
states and in a slightly modified form by Al'tshuler et

al. (Refs. 5, 6) in the corresponding Russian work.

The assumptions upon which the Mie-Gruneisen
equation is based are:-

(a) Only hydrostatic pressure is considered
(i.e. fluid model).

(b) Sufficiently high temperatures for C,
and the Gruneisen constant, , to
become essentially temperature-
independent.

(c) The lattice dynamics can be represented

by harmonic oscillators. As the solid
nears its melting point, this is not
strictly true and vibrations become
anharmonic.

(d) Effects of free electrons are neglected.
This assumption is valid up to temper-
atures of about 5000°K when electronic
additions to the specific heat, pressure
and energy become significant,

Under these conditions, the Mie-Gruneisen equation
may be written in the following form:

b-pe(0) eMe) (E-Ec(0))

1.3.1
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where}ac (Q) and E. (Q) are the pressure and
internal energy at 0°K respectively. r\(Q) is the
so called Gruneisen constant, a weak function of

density.

At sufficiently high temperatures* we may write

~
rr s E_+C, T
1.3.2
and equation 1.3.1 becomes

b'bc_((') =€P(Q)CVT 1.3.3

The dependence of the Gruneisen constant on density
may be deduced from the following formula due to

Slater (Ref.l10):

(%))
P(O(V%\D) 1.3.4

pi-

rle)- -3+

This formula although based on somé rather crude
assumptions does give quite surprisingly good
results at low pressures and since dependence of
M on Q is only slight its use seems to be

justified.

* above Debye temperature, which usually is just slightly
above room temperature.
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The function p; ( 67) can then either be
determined from static data or deduced through
equations 1.3.2, 1.3.3 and 1.3.4 from the shock
Hugoniot data. Although these two methods do cover
different ranges of pressure and density, Walsh et al,
(Ref. 4) finds that they join smoothly and the use
of the Gruneisen equation of state is justified at
least for a region in the neighbourhood of the shock

Hugoniot.

Al'tshuler (Ref. 6) modified equation 2 to allow
for the pressure of free elections in the metallic

state. The modified equation has the form:

E - EC(Q> +C, T+ VA @(€>Ta 1.3.5

where - is the electronic specific heat and “a

function of density only
@(e):€° (e/€0>2— 1.3.6

This modification is expected to give more accurate
results in the high pressure regions and good agreement
is noted by extrapolating their results unto results
obtained using the Thomas-Fermi model of the atom which
only starts applying at pressures over 50 megabars

(the highest experimental pressure being 9 megabars).
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Most of these equations and others like it
(see Ref.1l1l) although being the most accurate
presently available for the calculation of condensed
states are cumbersome to apply, requiring a great
amount of numerical work. Tillotson (Ref. 12) has
developed a semi-empirical equation which is
relatively simple and convenient to use in numerical

work,

bejorg Eot Mt By

o'rz’L+ 1.3.7

where n = ()/(70 and )L =7z -1.

This equation represents a best-fit extrapolation
between Thomas-Fermi data at ultra high pressures and
shock wave data at lcir:v pressures. Tha2 estimated
accuracy (from comparison with Walsh's and Al'tshuler's
data) is f 5% for shock Hugoniot pressures and T 8% for

isentropic expansion pressures,

(B) Expanded States

There still remains the problem of the expansion
of the shocked material at low densities (i.ef?%o<l).
1f material has sufficient enmergy (E>E.) at these
lower densities it will behave as a gas and an equation
different from those developed for condensed states

has to be used.
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Where Eg is a limiting energy at which gas will start

to condense and is related to the vaporization energy.

Tillotson (Ref. 12) here again developed a

semi-empirical equation of the following form:

((’o |) ~o<((>o )

1.3.8

boaer
E,,nz

The constants in equations 1.3.7 and 1.3.8 are
listed in TABLE III for some typical materials. For
very low densities (eo/é - 1)2>>>1 and the equation

reduces to the ideal gas equation

b-ate 1.3.9

If the internal energy, E, is less than a certain
minimum Eg required for vaporization then the material
is assumed to partially condense and the condensed

form equation 1.3.7 is used.

The above although not exact gives the approximate
behaviour of the expansion states with an estimated

accuracy within t 7%.
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General Equations of Motion

As mentioned in section 1.1, the hydrostatic
pressure behind the shocks produced in hypervelocity
impact is at least several orders of magnitude above
any rigidity effect of the material. The shocked
material can thus be treated as a fluid. The validity
of this assumption has been tested by comparing the
pressure obtained from dynamic measurements (as in
section 1.2)with the static pressure measurements made
by Bridgeman up to 100 kilobars. For aluminum, the
agreement is found to be entirely satisfactory down to

about 20 kilobars (Ref. 20).

In addition, we neglect any effects due to
viscosity and heat conduction. This assumption depends
on the physical size of the phenomena. These effects
are usually confined to small regions where the
gradients in velocity and temperature are very large.
These regions can then be represented either by shock
or shear discontinuities to account for their
presence. It has been estimated that these effects are

3

confined to regions of the order of 107~ cm under most

conditions (Ref. 4).

The next assumption is that of thermodynamic
equilibrium. Again, if these regions of large gradients
are avoided the fluid can be assumed in equilibrium so

that any two independent thermodynamic parameters are
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sufficient to determine the state of the fluid at

any point.

Making the usual assumptions of continuity,
homogeneity, and isotropy we can use a continuum
model and write the conservation equations in a
differential form for a compressible, inviscid, non-

heat-conducting fluid.

Continuity Equation

D -
5% -+ Qv,\/ =0 1.4.1

Equation of Motion

]_)_z+“ _ 1.4.2
CSt Vp-0

Energy Equation
P_Ea—)nb('/(’) 0
]) I> t 1.4.3

Equation of State

b=|3(l:"(3) 1.4.4
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. We have in addition neglected radiative heat
transfer which might be a questionable assumption
for ultra-high velocity impacts (greater than 75
km/sec) but seems reasonable in the normal velocity

range (Ref. 21).

One important property of the system of equations
(1.4.1 - 1.4.4) is that they can be scaled in length
and time (i.e. if length-scale is changed by a factor
K then time-scale is also changed by a factor K).
This enables us to calculate the flow field for ome
particular size and then scale results to any size of

that particular geometry.
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2. THE IMPACT OF PELLETS WITH THIN PLATES

2.1 Introduction

In 1946, Whipple (Ref. 19) suggested that the
kinetic energy of a meteor could be used to destroy
it on impact with a thin bumper, or shield, spaced a
distance away from the main skin of a space vehicle.
In this way the highly shocked meteor and bumper
material can expand laterally subsequent to the
original impact, distributing the previously
concentrated projectile energy over a large volume,
Provided the vehicle skin is far enough away from the
shield, the energy and momentum reaching it per unit

area will not be sufficient to cause serious damage.

That the general behaviour of such a scheme is
correct has been shown qualitatively by a photographic
study in a previous report in this series (Ref. 15).

A short sequence of frames from one of these shots is
reproduced here in Fig. 1 and serves to illustrate
the main features of the flow subsequent to the impact

of a cylinder with a thin plate.

At present however, the upper limit of the
experimentally obtained velocities (/v 11 km/sec) is
only the lower limit of expected meteor velocities
(10 - 75 km/sec.) Therefore, in order to extrapolate
the experimental results to these higher velocities

a sound theoretical foundation is needed.
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Previous analytical approaches in this series
(Refs. 13 and 14) have used an ideal gas equation
of state with a specific heat ratio (polytropic
exponent) of approximately three. This choice was
due first of all to the inherent simplicity of the
ideal gas approach and also due to the reasonably good
agreement obtained with experimentally determined shock
data. It is one of the purposes of this report to
critically examine some of the previous assumptions
made, especially the ideal gas assumption, and to
suggest possible improvements which would still enable

them to be used but with greater accuracy.

At the same time the basic one-dimensional model
of Ref. 13 is slightly reformulated to account for the
equation of state effects. This model is then used to
calculate the flow field subsequent to impact, in
particular the interaction of the rarefaction waves
formed when the impact shocks reach the end of both
the pellet and the bumper. It is hoped that a one-
dimensional consideration of this type will account
for much of the upstream flow observed in the

photographic study of Ref. 15.
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FIGURE 1 - FRAMING CAMERA SEQUENCE

Impact of a 12.7 mm. diameter, 8.9 mm. long
Lexan plastic cylinder against a 2.54 mm. thick Nylon
bumper plate. The impact velocity was 6.0 Km/sec.
The time between exposures 1.07 )}{ sec. and the exposure

time 0.45 }{ sec. The range pressure was 0.2 microns of
H ge p

mercury.
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FIG. 1 (CONT'D)
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2.2 Geometry of the One-Dimensional Formulation

In order to reduce the problem down to its simplest
form, we consider the axi-symmetric impact of a right-
cylindrical pellet of length L, and radius r,, with a
thin bumper plate of thickness 6 . The velocity V, of
the pellet is directed along its axis of symmetry and is

at right angles to the bumper.

] i

Furthermore, we make the gross simplification that the
cylindrical edge effects can be neglected. This will
only be strictly true for disk-like pellets with very
small length to diameter ratios (i.e. L/2r << 1). A
one-dimensional analysis however, will still be valid for
longer pellets at the axis of symmetry as long as the

radial interactions have not had time to reach the center.
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2.3 Shock System

Using the above idealization, we have that on the
moment of impact plane shock waves are developed, one
entering the pellet,égp, and the other, Sp, entering the
bumper material, The shock-wave system thus generated

is illustrated in the following sketch.
\/\uJ? ‘We
—_— _
Cre Cp Qe Cg,
|

Epo Ep Eg Ese
—_—> > >
\Y) V- LLP _L W ot rest
f‘p C S

We have shown previously that for a normal shock

the following relations hold with great generality

_Q__: W 2.3.1
<?o w-w
PP +Qouw 2.3.2

E-F .4 (prb) (&%)

2.3.3

These equations apply to both the pellet and bumper shocks
giving six equations in the 10 unknown Py pB,() p>

Q B’ Ep, Eg, u, , ug, W, , and wyg.
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The remaining four equations are obtained from the

equations of state in the form

E.E (Q‘\ﬂ 2.3.4

and from the continuity of velocity and pressure
Y
across the contact front, C, between the pellet and bumper

material

V- Uk‘;‘—' Wy 2.3.5
bo = b

2.3.6

Experimental determination of shocked states such as
described in section 1.2 give a single relation in IQ

and C> which essentially is a combination of equations
2.3.3 and 2.3.4 called the Hugoniot curve. TABLE I gives

a curve fit for Hugoniot curves for various materials,

Using these experimental curve fits the system of
equations 2.3.1 - 2.3.6 was solved by an iterative

technique for various material combinations.
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2.4 Interaction Times and Distances

<. —
When the shock waves S\ and Sg reach the free

surfaces of the pellet and bumper respectively centered

—_ —
rarefaction waves Rq and RB

are set up in order to
satisfy the zero pressure boundary condition at these

surfaces. The wave system subsequent to this interaction

is best illustrated by a x-t diagram as follows.

t

Ny

The points of initiation of the rarefaction waves
are the points where the shocks reach the free surfaces,

These are found as follows:

Bumper: tR-’— S/UJB 2.4.1
Xg - 9
L
tps fwp

Pellet: . VAR 2.4.2
o = L(%
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The head of a rarefaction wave moves into a medium
at the velocity of sound of that medium. In general for
any characteristic (of which the head and tail of a

rarefaction are just special cases) the slope is given by:

é}-: w+C for a )\, characteristic

t

e
o

= u-C

|

for a )\2 characteristic

(1.-

d

Now if ug,Cpg and C:P are known from the previous
section we can find the points where rarefactions start
to interact with contact front and each other,

Contact front: -

b= e/ + kg(uw%&‘)

X = Y, k. 2.4.3

<

Interaction: -

[:I = (lc —)LP) + EF (LLBT’ CP\) - tg(uﬁ ‘CPS
261F3, -

Ap- X, N ( LLB+CP\>(EI— kp} 2.4.4

Excluded from the above is the case where the
rarefactions reach the shocks before shocks reach free
surfaces. The resulting shock attenuation results in
non-isentropic flow which requires slightly different
treatment, This limits bumper to pellet length ratios

( 6 /L) to greater than 1/5 for most material combinations,
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The interaction points are plotted as a function of
the bumper thickness and impact velocity for various
material combinations in Figs. 2, 3 and 4. The thermo-
dynamic data for the shocked states was again obtained

from Al'tshuler's experiments (Refs. 6 and 7).
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2.5 The Interaction Region

At times greater than ty the flow no longer consists
of simple waves of one family of characteristics and the
interaction of the rarefactions has to be considered.
Explicit solutions of this problem exist (Ref. 17) but
these are complicated and applicable only to ideal gases
and then only for certain specific values of the ratio

of specific heats, N.

In order to determine the effect of more realistic
equations than the ideal gas approximation resort has to
be made to numerical techniques. The method used here is
a finite difference technique based on the method of

characteristics developed in Appendix A.

In order to apply the method, we need two points A
and B where all the flow parameters are known. We can
then determine the corresponding parameters at a point P,
which is the intersection of the x\ characteristic
through A and Uua)\ characteristic through B as

illustrated in the following figure.
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Making the basic assumption that the points are
chosen sufficiently close together so that the dependent
variables can be taken to vary linearly between adjacent
points, we write the characteristic equations (A.8 and

A,.9) in the following finite difference form.

Xp —X, =(L(_'\'C>}\| (EP_EFO
XP‘IB‘(LL’—C)XZ<EF‘EB) 2.5.1

and

Wp-Up = —(—Q_'E—)M (‘DP“}H)
uF'uB: (Flc—))\a<pq—)35> 2.5.2

As a first approximation, the values of the
gquantities subscripted )\' and }(Z.may be taken as those
values at the points A and B respectively. This
corresponds to a linear extrapolation and enables one
to solve equations 2.5.1 and 2.5.2 explicitly for point
P in terms of quantities at points A and B only,

knowing of course, the equation of the isentrope linking

(? , p, and c.

The second approximation then takes the average
values for j\l and ‘ﬂ between points A and P and points
2
B and P respectively, The values for P being determined

previously from the linear extrapolation.
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This procedure is in essence a trapezoidal rule type
of numerical integration of the variables along the

characteristics.

The above enables us to solve a characteristic
mesh provided we always have two points to start the

process.

In order to illustrate the method, we take the

following characteristic net,

The,KZ characteristics are numbered I and the A
characteristics J. The point I =i, J=j is an
undetermined point within the net. Now if we assume
that all points I £ i, J and I, J ¢ j have been
previously determined, we can apply equations 2.5.1

and 2.5.2 to find the undetermined points.
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Modifying equations 2.5.1 and 2.5.2 to include the
subscripted notation of the characteristic net and
solving them for the variables u (i, j), x ({, j),

t (i, j), we have:

w(1)e R rblife{€0) u(ei-) k(i)
((QC)R’L((’ )N ) 2.5.3

1l
V@Y
—
~
[
o
~—
O
=
~1
1
~
N

(Qc)s
(@),

1}
/NN
-

|

~——
/\

(“l

‘/*I
\./

2.5.4

for the first approximation. In the second approximation

the mean values are indicated by:

(Q R:Q(l‘%v3> C(L L)
(8) - o(iiory-c( i, §>

furthermore

p(03)= p(i13)- (ee)y [«(i3)-u(i10) |

2.5.5

-1
2

From this we can determine E’(i, j) and c(i, j)

through the equation of the isentrope.
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The location of the next mesh point is then given by:

L (:L'.S) _ {CR.E(I-I,SB‘X(i -«,3)} -4 EU'Sf{)')‘(L&-')}

(eR-cL) 2.5.7
where
Chozu(Tg3)re(i-501)
<L :Lgﬁ,g—'s_)-c(i,j-lJ 2.5.8

for the second approximation.

Furthermore

l(i.§>:x(i —t,3> +C R(t(l‘f&)‘([“'g) 2.5.9

This then demonstrated how points within the
interaction region may be calculated. It remains to
be shown how the process may be started at the boundaries

of the interaction region.
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2.6 Boundaries of the Interaction Region

In order to start the procedure described in the
previous section, we need conditions along the
characteristic lines J = 1l and I = 1. These are
the first characteristics crossing the rarefaction

<_ -
waves Rp and R ¢ respectively.

P
For the bumper rarefaction, Ry, we have the

following geometry:

where for the moment we have assumed that the centered
.

rarefaction RB does not pass through a contact front.

The interaction of the wave with a contact front will

be discussed in the next section and the present

analysis is only strictly applicable to the impact of

like materials.

At this point it becomes necessary to specify our
interval or grid size. Since the free surface boundary
condition is one of pressure ( p = o at the free

surface), we define our interval A p so that
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b(1)=h(L-1)+ab

2.6.1
From equation 2.6.1 we can determine Q' (i, 1) and
¢ (i, 1) through the specified isentrope.

The velocity, u (i, 1) can then be determined from

the first of equations (A.9) as follows:

w(i, |) =u(i-) “M)/(Q(i‘lz")'cﬁ“i")) 2.6.2

Where the subscript (i =% ) as before indicates the

average value of the parameters between (i —1) and (i).

The location of point (i, 1) can then be found

from equations 2.5.7 and 2.5.9 as

l:(i,\)r {CR. E(L—l,n)-l(‘t“"‘ﬂf -ZCL' tb“xﬁ} 2.6.3

(CP\—C L) .

and )(([,\); a(,@-\,\) +CR[£CE,\>—E(L-I,uﬂ.

6.4

where CHR- u_(Z-';_»‘) 1—c<l -3 ,\)
CL:LL(E.|>—C(f,l) 2.6.5

The second approximation is used here throughout since
an explicit form can be obtained and no iteration is

necessary.
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N
For the pellet rarefaction, RF’ , exactly the
same procedure is used except the subscripts I and J
are interchanged. The initial condition x (1, 1),
t (1, 1) is the same for both rarefaction waves and

is previously calculated as xy, tjg.

In the above, we have neglected the interaction of
the bumper rarefaction with the contact front (for
dissimilar materials) and we go on to the next section

to discuss the necessary modifications.



41

2.7 Interaction with a Contact Surface

Since the bumper is always considerably thinner
than the pellet, the bumper rarefaction always inter-
acts first with the contact front before meeting the
pellet rarefaction. We therefore, consider the

-

problem of a centered rarefaction Ry interacting with

——
a contact front C. The geometry of the problem is as

follows:

X‘B-tb .

In order to differentiate between materials, we
subscript pellet material, P and bumper material B.

The basic conditions across a contact front are:
W, - Uy

\Dp )3 ()

and 2.7,

2.7.

M

The first condition governs the motion of the front
and the second enables one to transfer thermodynamic

quantities across the front.
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From previous calculations we know conditions
at points Xo, tg and Xg, tp- There will be both
reflected and transmitted waves from the contact front,
Note that the transmitted waves are simple since they
are entering a region of constant properties (see

Appendix B).

The first reflected characteristic JJ = 1 is
found in exactly the same manner as in the previous
section, the only difference being the replacement of

XCs tC for X15 ty-

To start the calculation of the next row JJ, we
need to calculate the next point along the contact
front. For points on the contact front I = JJ.
Taking any point (i, i) on the contact front, we
assume that all points previous to it have been

determined for all I.

The fact that the transmitted characteristics
are of only one family (simple waves) enables us to

use the following equation
u(i)- LLCL~‘) = _(Q'C)R(’p(i)_\o@‘q

for the variation from one characteristic to another,

properties being constant along any one characteristic,
In addition, we have the conditions along the left
running characteristic intersecting at (i, i) plus the
constant pressure condition across the contact front

itself.
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In terms of these conditions, we can then solve

for u (i, i) and p (i, i) as follows:
e \L\~ (Q\\CP)E\_l}(ﬁ—l,i-l>i—_‘3( ) ﬁ—(Q%CB)LL(I,i-|)—\3(L)L-t>
. L) - 4
C ¢eP)n "(,QPC?)L)

2.7.3

p(e.)= bl Teocoia[wli ) -ulinin ] e

where

(€pcr)a=Cp(t-1,111) Cp(-1i-)

and 2.7.5
(CaCe)i .Gy (1im1),Cp (Lhim)
for the first approximation.

In the second approximation they are:

and (QPCP)R: Ep(i’—z'- ,l-%) 'CP(L'—;.I_'5‘>

(@BCe)R - 65(1,1'5) ; CB(E'I -%) 2.7.6

Knowing p (i, i) thermodynamic conditions on both
sides of the contact front can be found through the
respective isentropes and the continuity of pressure

across the contact front.

The location of the point (i, i) is simply
determined from the condition that the front moves at
the local particle velocity and the intersection of
the left running characteristic at (i, i) as follows:

e(0)- {ug\;(l-l,[q)—x(i-l,l—l)},{ b )-x(i, i)

(uc —cL_)

2.7.7
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and

76(;1): X(L-l fo.-\) + U [t({)[)- l;(L-| \L-l)] 2.7.8

where - - 72
%C'“(Li’ ;)

wma  CL.w(i,i-3)-Co(i,i-y) 2700

where the second approximation is used with no

iteration being necessary.

Having determined the next point on the contact
front, points along the line JJ = i can then be
determined using the method of Section 2.5. 1In this
manner the whole region can be solved and the
transmitted wave although not centered any more is
still simple and the interaction problem can be
handled as previously, with point (xp, tg) being
replaced by the corresponding (x (1), t (i) ) for

I =JJ (i.e., points on the contact front)
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Calculation of the Isentropes and Several
Approximations

In the previous section, we have assumed the
functions €’= Q is (p) and ¢ = g (p) along the
isentropes as known. They may be obtained by
considering the second law of thermodynamics in
differential form.

T45-d Evpd( %)

2.8.1

For an isentropic process this reduces to

c\.E:—bc{(‘/o)_. P/()ZcLQ

or integrating

E=ngd€ 2.8.2

Substituting equation 2.8.2 into the equation of
state 1.3,7 and 1.3.8 and numerically integrating the

isentropes can be obtained.

Several aluminum isentropes have been plotted in
Fig. 5 along with the Hugoniot curve calculated from
equation 1.3.7. Note that as the material is more
strongly shocked, the isentropic expansion becomes
more and more like that of a gas (i-e-§3'~—9 o and
p —s 0). The experimental points of Walsh (Ref. 1)
and Al'tshuler (Ref. 6) are also given showing

excellent agreement,



46

et NASTH
£ w : T LOINODAH
O LOINODNH HHI ; :
1H Al ..@lu 1 Mt
HHHHH HHHHHHHHH o
JOYINASTI ANV LOINOYAH WANIWATY & :




47

There are several approximate equations for
solid isentropes. One of the most widely used is

Murnaghan's (Ref. 23).

b= A [(&) " b ]

C 2.8.3

This equation is based on the theory of finite strain
and shows good qualitative agreement with metal
behaviour and with condensed states in general.
Chou at al. (Ref. 18) has tabulated the constants
Am, x\m’ and B, for various shock strengths in
aluminum. He obtained these constants by fitting
equation 2.8.3 to isentropes calculated from
Tillotson's equations (equations 1.3.7 and 1.3.8).
Comparison of equation 2,8.3 with the more accurate
isentropes shows good agreement throughout the
pressure range, with the best agreement shown for

the not so strongly shocked isentropes (Figs. 6 & 7).

As the material becomes more strongly shocked,
the constant B; —> o and the matefial behaves more
and more like a gas. When B, = o, equation 2.8.3

becomes the ideal gas equation for an isentrope

P=Aic <%) rid 2.8.4

The constant K\id is found from the initial shocked

state as follows:
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i.e., for an ideal gas
b
rid-t €
therefore ¥y - |+ evaluated
E¢
at a point on the Hugoniot.

Aid is calculated from the initial shocked state.

Comparison of equation 2.8.4 with equation
2.8.3 and the numerically integrated isentropes
shows surprisingly good agreement for reasonably

high pressures (above 1/4 x shock pressure).

For computer calculations relatively little is
gained by using these simpler forms, since either
Tillotson's equations directly or curve fits to the
isentropes can be used quite readily. The
importance of such simple forms as equations 2.8.3
and 2.8.4 lies in the fact that closed solutions
can quite often be obtained with the resulting
insight on how the various parameters affect the

problem.
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RESULTS AND DISCUSSIONS

3.

1

Initial States

The strong shock system initially formed on
impact can nearly always be represented by a one-
dimensional formulation unless the impact geometry
is unusual (e.g. a cone impacting vertex first),
Therefore, the shock system considered in Section 2.3
has general application to the entire hypervelocity

impact problem.

In solving the system of equations or Section
2.3, the initial pressure p, was neglected with
respect to the shocked pressure. The experimental
Hugoniot curves reported in Ref. 6 were used. They
represent best fit data of all experimental work to
date and have an accuracy of approximately f 1% of
the shock pressure. One drawback is using such
information is that it cannot be extrapolated much
beyond the range of the experimental data and
therefore, the calculations are limited to below

15 km/sec. impact velocity.

The equations were then solved using an iterative
technique (Newton-Raphson method) for the shock
parameters p, Q , E, u, andWw as a function of the
impact velocity V. The results are plotted in
Figs. 8 - 11 for the impact of aluminum on copper,

lead and aluminum, These results correspond closely

to the ones published by Maiden (Ref. 16) which is
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not surprising since the same experimental data was
used in both cases, For a more exhaustive coverage
of material combinations the reader is referred to
Maiden's work where the impact of aluminum on

magnesium, aluminum, titanium and gold is considered.

The general trend is clear. As the bumper
material increases in density, the pellet material
is more strongly shocked for the same impact velocity
and at the same time the particle velocity behind
the bumper shock is reduced. In other words a
denser bumper is more effective in reducing the
resultant velocity of the system and in the process
converts this kinetic energy into higher thermo-

dynamic states.

In addition, nearly linear relations hold for
the variation of the velocities u, and w with
impact velocity. This curious fact has been noted
in the experimental determination of shock Hugoniots
and no truly satisfactory explanation has been

advanced for this phenomenon at this date (Ref. 8)

Many of the effects observed here had been
explained qualitatively in earlier reports (Refs. 13
and 14) using the ideal gas approximation. For
example the behaviour of the impact of different
materials can best be examined by looking at the

behaviour of the bumper particle velocity, upg.
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The relation derived in Ref, 13 for ug is:

\/ ——

Ve + 1 ‘B o
{ 1—,_41__\'
\/(S\P'f' EPC} 3.1.1

X\p)*’
Under the ideal gas assumption, the ratio E;i:T"
N
is a constant. Therefore, we plotj(‘ES‘H ‘? B
rper oy
versus impact velocity V for the case of aluminum on

copper impact in Fig. 11-A. Although the function
oscillates slowly as impact velocity increases, its
value remains practically constant within narrow
limits. This oscillation can be explained as due to

the original curve-fitting of experimental data.

We can therefore say that although [$ is in
general a function of the density Q? , or indirectly
of the impact velocity V, the variation for two
different materials is sufficiently alike for the

AR Y
ratio 7 ° to remain essentially constant.

- —
5p+l
The speed of sound in the shocked states was
also calculated from the Russian experimental data
(Ref. 7, see TABLE II)., The results are plotted in

Figures 12 and 13, for the various material

combinations,

In comparing these values to the ideal gas
approximation, an inconsistency arises., Using the

strong shock approximation, the density ratio for
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an ideal gas becomes:

Ve, Lu

3.

1.

2
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Also, for an ideal gas the speed of sound is

given by:

cro Xk

L 3.1.3

N

where both 5\ 's are the same in a self-consistent
theory., From the experimental data, however, it is
found that separate determinations of J\ from

equations 3.1.2 and 3,1.3 differ by as much as 30%

with the 6\from equation 3.1.3 being always lower.

The obvious explanation would be to say that the
material does not behave as an ideal gas and we
have therefore no reason to expect a consistency.
There is however, a more fundamental reason for this
discrepancy. In determining aA from the shock density
ratio we are considering a transition from unshocked
states to final shocked states. The J“ calculated in
this manner is representative of the whole range and
is an average value. The second determination
considers only the final shocked state and is there-

fore only representative of this final state,

This view is supported by the fact that
isentropes calculated by using the JA from equation
3,1.2 agree surprisingly well with more exact

determinations as in section 2.8.
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Interaction Points

A natural development of the calculation of the
initial states is the location of the point where
the rarefaction waves first interact, marking the
disappearance of the region of constant properties

existing behind the shocks,

This calculation as described in section 2.4
introduces the geometry of the one-dimensional impact
i.e. pellet and bumper lengths) and we can thus study
the interrelated effects of velocity and bumper plate

thickness.

Since the results can be scaled all calculations,
here and subsequent to this section, have been
performed for a standard 10 mm long aluminum pellet.
In Figs. 2, 3, 4, the location of the interaction
point (xj, tj) is plotted as a function of impact
velocity and bumper thickness for the impact of

aluminum on aluminum, copper and lead respectively.

As can be seen from the graphs, both impact
velocity and bumper plate thickness greatly
influence the point of interaction. Both an increase
in impact velocity and bumper thickness tend to
drive the interaction point further to the right

(towards positive x).
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A change in bumper material also causes
important change as can be seen by comparing
Figs. 2 & 4. The bumper thickness seems to become
a much more important parameter as the bumper density
is increased, with impact velocity having a decreased
importance except in determining the time of inter-

action,

Another important fact is that these graphs point
out the location of the pellet shock. For most
impacts in the experimental range, Wp‘;;> V, meaning
that the pellet shock lies ahead of the bumper
(negative x). The broken line shows the points
(xp, tp) where the pellet shock first reaches the
pellet free-surface, which of course is the furthest
point the pellet shock will ever reach,. An increase
in impact velocity is seen to bring the shock closer
to the bumper until for an impact velocity of 15.5
km/sec the shock lies right on the bumper for
aluminum on aluminum impact. For denser bumper
materials the shock lies even further from the bumper
at the same velocity. The position of the pellet
shock has a great effect in determining upstream flow
(negative x) especially radial flow effects for finite
diameter pellets. Radial effects are of course
excluded in our one-dimensional analysis but cannot be
neglected for pellets of finite diameter, even at very

short times after impact.
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The Interaction Region

Accuracy of the Numerical Techniques

The calculation procedure outlined in Section
2.5, 2.6 and 2.7 was used to write a computer program
in the Fortran coding system for an IBM 7040 digital
computer. The calculation of the initial states (as
in Sections 2.3 and 2 .4) was included in this program
so that only the impact velocity, bumper thickness
and properties of the materials had to be fed into

the program as the variable parameters.

In specifying the grid size, the method ir" .duced
in Section 2.6 was used (equation 2.6.1 ) A p was
set equal to -pg/l00 in almost all cases calculated
where pg is the initial shock pressure. This interval
size was found to give stable ‘and accurate results up
to times after impact ¢f about 2.5 .4 sec. for a
standard 10 mm long pellet. At times greater than
about 3 Y sec. the mesh size diverged and the

finite difference procedure became unstable.

The accuracy and stability of the program were
checked by comparing the results to several exact
solutions given by Stanyuokovich (ref. 17) for the
interaction of rarefaction waves using the special
case of an ideal gas with 2" = 3 The results agreed

within T 1% for times less than 2.5 M sec after

which the answers became increasingly inaccurate
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Since a one-dimensional analysis is only valid
for short times after impact, an improvement of the
long term performance of the program was not

attempted.

Effect of Equation of State on Expansion

After noting the surprisingly good agreement of
the constant @‘ approximation at high pressures
(Section 2,8) it was decided to see if this agreement
could be extended to calculations that included the

dynamics of the problem,

Using as the 'exact" isentrope a polynomial
curve-fit to the numerically integrated Tillotson
equation (see Section 2.8), the case of impact of
aluminum on aluminum at 10.07 km/sec. was
calculated. 1In the calculations whenever a
negative pressure occurred it was set to zero.
Negative pressures signify tensile stresses which
could be permitted in a solid system, setting the
negative pressure equal to zero signifies that the
solid has yielded (dotted lines in Figs. 14, 16 and

17).

In Figs. 14 and 15, we show the density and
pressure profiles respectively at times ts, tp +
0.1, and t7 + 0.2 after impact, where tr is the
time at which the rarefaction waves first start to

interact.
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The graphs show a typical solid behaviour in that
the density does not fall to zero at the escape front
and also a rather rapid relaxation of static pressure of

the material,

The above case was now recalculated using the same
initial conditions but using a polytropic gas law

calculated according to equations 2.8.4 and 3.1.2,

Figs, 16 and 17 give the density and pressure
profiles respectively at time, t; + 0.1 sec. for both the

"exact' and ''polytropic' case,

Both peak density and pressure are identical in
both cases but the '"polytropic'" expansion has a shallower
profile in the low pressure region. The big difference is
the location of the escape fronts where pressure equals
zero, For the "polytropic'" gas the escape front lies far
beyond those calculated using the more exact solution.
However, long before the escape front is reached, the
pressure has effectively dropped to zero (with respect
to peak pressure) for the '"polytropic" gas. Thus, the
"effective escape front'" where the first "observable"
pressure occurs is much closer to the more exact solution
than is indicated at a first glance when the "escape

fronts" are compared.
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The case tested here is actually quite severe
since the material was not shocked strongly enough
to completely vapourize it, This resulted in a
finite density at the eseape front, which can of
course, never be approached by a polytropic gas.
Nevertheless, a satisfactory general agreement is
noted with practically exact agreement in the high
pressure region. As was shown in Section 2.8, the
agreement between the polytropic gas laws and the
more exact isentropes become much better in the low
pressure region as the material becomes more

strongly shocked.

3.3.3 Surface of Zero Velocity

The pellet escape wave generally moves with
negative velocity (i.e. upstream) while the bumper
escape wave moves in a positive direction (downstream).
Somewhere in between these two extremes there must be
a point of zero velocity. The determination of these
points of zero velocity will then give an indication
of the amount of flow that occurs upstream or down-

stream of the bumper,

In order to study the general behaviour of these
surfaces of zero velocity as a function of impact
velocity and bumper material, a series of cases were
calculated using either aluminum or copper as bumper

material at impact velocities varying from 5 - 15 km/

sec,
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FIG. 20 COMPARISON OF EXACT SOLUTION OF CONTACT
FRONT WITH SOLUTION NEGLECTION NEGLECTING

REFLECTIONS,
§ i t: E:i- i :“ - LL F -
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The initial states were calculated from
Al'tshuler's experimental data (TABLES I & II) and
the ideal gas approximation was used for the
expansion states., This last approach seemed
justified from the considerations of the previous
section and also of Section 2.8, especially at

impact velocities above 10 km/sec.

The results are presented in Figs. 18 & 19 for
aluminum on aluminum and copper impacts respectively.
A strong dependence of the zero velocity curves is
noted both on impact velocity and bumper material
(density), an increase in both tends to drive the
curves toward positive x while the general shape

tends to remain constant,

Reflections from the Contact Front

In some of the previous theoretical work (Ref.14)
the reflected waves from the contact front had been

assumed not to affect the incident rarefaction wave,

The calculations of the impact of dissimilar
materials show that this approximation although valid
near the points (xc, t.) where the rarefaction first
starts to interact with the contact front becomes
increasingly inaccurate as one progresses in time

along the contact front,
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Fig. 20 compares the approximation to the
exact solution for the impact of aluminum on copper
at 10 km/sec. The approximation is seen to become

increasingly inaccurate as the pressure decays.
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CONCLUSL 7§

The following conclusions may be drawn from the

foregoing theoretical avalysis.

Useful theoretical predictions of the flow
subsequent to impact may be made using & - ~ly
one-dimensional model.

The upstream flow is strongly dependent on both
bumper material and impact velocity.

A polytronic gas law provides a useful approx-
imation of the expansion isentrope and gives
qualitatively correct answers even when the
materinl does not behave as a gas (i..e., is not
vapourized).

From the calculation of various isentropes, ‘it
appears that for mest common metals (alvminum,
conper, iron) will not completely vaporize until
7 mact velocities approaching 15 km/sec. are
reached.

The expansion density profiles depend strongly
on whether the material is vaporized or not,
especially at the escape fron':-

Reflections from the contact front are
important and have to be allowed in any analysis.



76

RECOMMENDATIONS FOR EXPERIMENTAL WORK

Three basic methods are available for experimental
determination of the flow properties,

(a) High speed photographic techniques including
both single and multiple frames.

(b) Flash X-ray absorption techniques.

(c) Piezo-electric crystal pressure transducers.
All of the above systems can be obtained

commercially giving sufficient time resolution (0.1 M

sec) for the impact phenomena to be observed.

Of the three methods the first two seem most

applicable to the study of the initial expansion profile.

Some earlier framing camera shots were reproduced
in Fig. 1. This technique can be extended to give 8 x

10°

frames/sec, This then enables one to study shock
position and initial expansion direction although the

details of the one-dimensional regime are hidden.

Flash X-ray units can be obtained giving 7 x 1078
sec. flash duration for as many as four channels. This
enables one to study density gradients of the system.

This seems to be the most promising approach and some of
the work performed by Maiden (Ref. 16) indicates very
good results.

Pressure measurements although essential in determin-
ing momentum flux of long term expansion have less applic-

ation to the initial expansion.
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APPENDIX A

THE METHOD OF CHARACTERISTICS FOR ONE-DIMENSIONAL UNSTEADY

FLOW

The equations governing one-dimensional unsteady flow

are readily deduced from the general equations in the

previous section and are as follows:

Continuity Equation

Equation of Motion

Qs

(. +€uau' f_&.E:O

t X O

¢

|

Qv
Qs

Energy Equation

Q

~_§L + W fiéi = 0
t x

Equation of State

b-b(es)

The equations (A.l1 - A.4) form a system of quasilinear
partial-differential equations of the hyperbolic type.

exact solution is in general not possible, but it is

Al

A.2

A3

A4

An

possible to reduce the equations to a total differential form

by considering the variation of the unknown variables along

certain directions known as the characteristic directions.
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Introducing the speed of sound, (C , as

cl:(‘)%e)g

A.5

we can write for the differential C{P

tha = (g—g)gclqn»(%%)eis = CZJ.Q +(g—s\j_)ecLs

Using this to eliminate derivatives of (? in equation

(A.1) we have:

Jop op c2 oW _
ot +LLAL +C 23_;%— A.6

Adding and subtracting equation (A.6) from equation

(A.2) gives:
+(w+°3—*3~+€c{ir (“*"%zz-‘o
b . du _
0 el -2 (e )
A.7
and fiEL + LA'élEi =0
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These equations become total differential equations

along the following characteristic directions

respectively:
(w i’t‘ Ww-+c
(ij Q‘._ =W -c
- t
(RQ j._g - W A.8

4t

Along these characteristics the rate of change of the

unknown variables P,LL and S is given by:
asLL O

al sna (L) IP—w—Qc -
aLmiQ)ib Qe o

Leow x> ds . o
"ATs at A.9

"

Note that the first two families of characteristic
08 and.lz) travel at the velocity of sound with respect
to the fluid either with the flow ( A ‘), or against it
( A_ ). These are known respectively as right running or

left running Mach lines.

The third family of characteristics (‘AK) is
stationary with respect to the fluid. It is sometimes
known as the regularity condition and imposes the
constancy of entropy along a path-line. In cases of
isentropic flow, the regularity condition is automatically

satisfied since entropy is constant throughout the flow
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not only on a path line. In all the further analysis
in this paper we will limit ourselves to isentropic

flow.
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APPENDIX B

SIMPLE WAVES

Assuming isentropic flow, the first two equations of

A.9 can be integrated in the form:

w+ L ): 2 r(;l,)
LL—L((:) -15(;\1) B 1

i

where r(‘k.) and S(Az) are arbitrary functions of the two
characteristic directions )“ and R\Zrespectively. They are
known as the Rieman invariants. The quantity L (p) is
given by:

Pcl. e 4
(’(P>:j"§fi= Q\E—(’—(> B.2

! .
where Gﬁ and }) are arbitrary constants.

A simple wave is now defined as a region where either
r or s is constant. Taking as an example, the case s(,{z)
= constant, then the A\‘characteristics r = constant are
straight. The wave thus propagates at velocity (u + ¢)
and is right-running. In addition properties along the

characteristic lines )\'are constant.

A fundamental property of simple waves is that a region
adjacent to a state of constant properties will be a
simple wave. For a more complete discussion of both

simple waves and the method of characteristics see Ref. 9.
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TABLE 1

Polynomial Curve-Fit of Hugoniot Curve of Various Materials:

\’) = né' Q, (%—l)n X |o'°cL§hes/cMz

Aluminum Copper Lead Iron ;
73.1 137.0 41.4 30.3
152.7 271.7 101.7 724.5
143.5 224.0 120.0 -271.2
-887 1078 -43 -14
2862 -2907 547 852
-3192 3674 -801 | -----
1183 -1346 312 | e----
TABLE 1T

Polynomial Curve-Fit of Isentropic Compressibility Behind
Shock:

S n (& ) x1o gnes

Aluminum Copper Lead Iron
73.1 137.0 41.4 196.3
305.4 543.4 203.4 -157.0
194.8 266.8 184.2 3862.2
-444 4037 248 -5448
519 -11745 -439 3077
-106 9650 167 | -----
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TABLE 111

Equation-of-State Constants (Ref. 12)

Material a H? Eq A B Es < %
CH, 0.6 0 0.92 7.0 7.5 2.0 2.4 10 5
“Pb 0.4 .37 ) 11.34 1.5| 46.64| 15.0 0.26 13 15
W 0.5 041 19.17 1 22.51 308.0 } 250.0 1.4 10 10
Cu 0.5 .5 8.90 32.5| 139.0 | 110.0 2.0 5 5
Fe 0.5 .5 7.86 9.5 | 127.9 | 105.0 2.5 5 5
Al 0.5 .63 2.70 5.0 75.2 65.0 3.0 5 5
Be 0.5 .62 1.85 | 17.5 | 117.34| 55.0 10.0 5 5
Ti. 0.5 .60 | 4.50 7.0 | 103.0 | 50.0 3.5 5 5
Ni 0.5 .33 | 8.86 9.0 | 191.2 | 150.0 3.0 5 5
Mo 0.5 .62 1 10.20 4.5 | 271.3 | 165.0 3.0 5 5
Th 0.4 .86 | 11.68 2.5 53.1 50.0 2.0 9 0.88




